700 research outputs found

    Fixation of genetic variation and optimization of gene expression: The speed of evolution in isolated lizard populations undergoing Reverse Island Syndrome

    Get PDF
    The ecological theory of island biogeography suggests that mainland populations should be more genetically divergent from those on large and distant islands rather than from those on small and close islets. Some island populations do not evolve in a linear way, but the process of divergence occurs more rapidly because they undergo a series of phenotypic changes, jointly known as the Island Syndrome. A special case is Reversed Island Syndrome (RIS), in which populations show drastic phenotypic changes both in body shape, skin colouration, age of sexual maturity, aggressiveness, and food intake rates. The populations showing the RIS were observed on islets nearby mainland and recently raised, and for this they are useful models to study the occurrence of rapid evolutionary change. We investigated the timing and mode of evolution of lizard populations adapted through selection on small islets. For our analyses, we used an ad hoc model system of three populations: wild-type lizards from the mainland and insular lizards from a big island (Capri, Italy), both Podarcis siculus siculus not affected by the syndrome, and a lizard population from islet (Scopolo) undergoing the RIS (called P. s. coerulea because of their melanism). The split time of the big (Capri) and small (Scopolo) islands was determined using geological events, like sea-level rises. To infer molecular evolution, we compared five complete mitochondrial genomes for each population to reconstruct the phylogeography and estimate the divergence time between island and mainland lizards. We found a lower mitochondrial mutation rate in Scopolo lizards despite the phenotypic changes achieved in approximately 8,000 years. Furthermore, transcriptome analyses showed significant differential gene expression between islet and mainland lizard populations, suggesting the key role of plasticity in these unpredictable environments

    Association between Resistin Levels and All-Cause and Cardiovascular Mortality: A New Study and a Systematic Review and Meta-Analysis.

    Get PDF
    CONTEXT: Studies concerning the association between circulating resistin and mortality risk have reported, so far, conflicting results. OBJECTIVE: To investigate the association between resistin and both all-cause and cardiovascular (CV) mortality risk by 1) analyzing data from the Gargano Heart Study (GHS) prospective design (n=359 patients; 81 and 58 all-cause and CV deaths, respectively); 2) performing meta-analyses of all published studies addressing the above mentioned associations. DATA SOURCE AND STUDY SELECTION: MEDLINE and Web of Science search of studies reporting hazard ratios (HR) of circulating resistin for all-cause or CV mortality. DATA EXTRACTION: Performed independently by two investigators, using a standardized data extraction sheet. DATA SYNTHESIS: In GHS, adjusted HRs per one standard deviation (SD) increment in resistin concentration were 1.28 (95% CI: 1.07-1.54) and 1.32 (95% CI: 1.06-1.64) for all-cause and CV mortality, respectively. The meta-analyses included 7 studies (n=4016; 961 events) for all-cause mortality and 6 studies (n=4,187: 412 events) for CV mortality. Pooled HRs per one SD increment in resistin levels were 1.21 (95% CI: 1.03-1.42, Q-test p for heterogeneity<0.001) and 1.05 (95% CI: 1.01-1.10, Q-test p for heterogeneity=0.199) for all-cause and CV mortality, respectively. At meta-regression analyses, study mean age explained 9.9% of all-cause mortality studies heterogeneity. After adjusting for age, HR for all-cause mortality was 1.24 (95% CI: 1.06-1.45). CONCLUSIONS: Our results provide evidence for an association between circulating resistin and mortality risk among high-risk patients as are those with diabetes and coronary artery disease

    Comparative transcriptomics reveals clues for differences in pathogenicity between hysterothylacium aduncum, Anisakis simplex sensu stricto and Anisakis pegreffid

    Get PDF
    Ascaridoid nematodes are widespread in marine fishes. Despite their major socioeconomic importance, mechanisms associated to the fish-borne zoonotic disease anisakiasis are still obscure. RNA-Seq and de-novo assembly were herein applied to RNA extracted from larvae and dissected pharynx of Hysterothylacium aduncum (HA), a non-pathogenic nematode. Assembled transcripts in HA were annotated and compared to the transcriptomes of the zoonotic species Anisakis simplex sensu stricto (AS) and Anisakis pegreffii (AP). Approximately 60,000,000 single-end reads were generated for HA, AS and AP. Transcripts in HA encoded for 30,254 putative peptides while AS and AP encoded for 20,574 and 20,840 putative peptides, respectively. Differential gene expression analyses yielded 471, 612 and 526 transcripts up regulated in the pharynx of HA, AS and AP. The transcriptomes of larvae and pharynx of HA were enriched in transcripts encoding collagen, peptidases, ribosomal proteins and in heat-shock motifs. Transcripts encoding proteolytic enzymes, anesthetics, inhibitors of primary hemostasis and virulence factors, anticoagulants and immunomodulatory peptides were up-regulated in AS and AP pharynx. This study represents the first transcriptomic characterization of a marine parasitic nematode commonly recovered in fish and probably of negligible concern for public health

    Comparative Transcriptomics Reveals Clues for Differences in Pathogenicity between Hysterothylacium aduncum, Anisakissimplex sensu stricto and Anisakis pegreffii

    Get PDF
    Ascaridoid nematodes are widespread in marine fishes. Despite their major socioeconomic importance, mechanisms associated to the fish-borne zoonotic disease anisakiasis are still obscure. RNA-Seq and de-novo assembly were herein applied to RNA extracted from larvae and dissected pharynx of Hysterothylacium aduncum (HA), a non-pathogenic nematode. Assembled transcripts in HA were annotated and compared to the transcriptomes of the zoonotic species Anisakis simplex sensu stricto (AS) and Anisakis pegreffii (AP). Approximately 60,000,000 single-end reads were generated for HA, AS and AP. Transcripts in HA encoded for 30,254 putative peptides while AS and AP encoded for 20,574 and 20,840 putative peptides, respectively. Differential gene expression analyses yielded 471, 612 and 526 transcripts up regulated in the pharynx of HA, AS and AP. The transcriptomes of larvae and pharynx of HA were enriched in transcripts encoding collagen, peptidases, ribosomal proteins and in heat-shock motifs. Transcripts encoding proteolytic enzymes, anesthetics, inhibitors of primary hemostasis and virulence factors, anticoagulants and immunomodulatory peptides were up-regulated in AS and AP pharynx. This study represents the first transcriptomic characterization of a marine parasitic nematode commonly recovered in fish and probably of negligible concern for public health

    Unraveling the enigma of new-onset refractory status epilepticus: a systematic review of aetiologies

    Get PDF
    Background and purpose: New-onset refractory status epilepticus (NORSE) is a clinical presentation, neither a specific diagnosis nor a clinical entity. It refers to a patient without active epilepsy or other pre-existing relevant neurological disorder, with a NORSE without a clear acute or active structural, toxic or metabolic cause. This study reviews the currently available evidence about the aetiology of patients presenting with NORSE and NORSE-related conditions. Methods: A systematic search was carried out for clinical trials, observational studies, case series and case reports including patients who presented with NORSE, febrile-infection-related epilepsy syndrome or the infantile hemiconvulsion-hemiplegia and epilepsy syndrome. Results: Four hundred and fifty records were initially identified, of which 197 were included in the review. The selected studies were retrospective case–control (n&nbsp;=&nbsp;11), case series (n&nbsp;=&nbsp;83) and case reports (n&nbsp;=&nbsp;103) and overall described 1334 patients both of paediatric and adult age. Aetiology remains unexplained in about half of the cases, representing the so-called ‘cryptogenic NORSE’. Amongst adult patients without cryptogenic NORSE, the most often identified cause is autoimmune encephalitis, either non-paraneoplastic or paraneoplastic. Infections are the prevalent aetiology of paediatric non-cryptogenic NORSE. Genetic and congenital disorders can have a causative role in NORSE, and toxic, vascular and degenerative conditions have also been described. Conclusions: Far from being a unitary condition, NORSE is a heterogeneous and clinically challenging presentation. The development and dissemination of protocols and guidelines to standardize diagnostic work-up and guide therapeutic approaches should be implemented. Global cooperation and multicentre research represent priorities to improve the understanding of NORSE

    Nitric oxide activates cyclooxygenase enzymes.

    Full text link

    Targeting the autosomal Ceratitis capitata transformer gene using Cas9 or dCas9 to masculinize XX individuals without inducing mutations

    Get PDF
    Background: Females of the Mediterranean fruit fly Ceratitis capitata (Medfly) are major agricultural pests, as they lay eggs into the fruit crops of hundreds of plant species. In Medfly, female sex determination is based on the activation of Cctransformer (Cctra). A maternal contribution of Cctra is required to activate Cctra itself in the XX embryos and to start and epigenetically maintain a Cctra positive feedback loop, by female-specific alternative splicing, leading to female development. In XY embryos, the male determining Maleness-on-the-Y gene (MoY) blocks this activation and Cctra produces male-specific transcripts encoding truncated CcTRA isoforms and male differentiation occurs. Results: With the aim of inducing frameshift mutations in the first coding exon to disrupt both female-specific and shorter male-specific CcTRA open reading frames (ORF), we injected Cas9 ribonucleoproteins (Cas9 and single guide RNA, sgRNA) in embryos. As this approach leads to mostly monoallelic mutations, masculinization was expected only in G1 XX individuals carrying biallelic mutations, following crosses of G0 injected individuals. Surprisingly, these injections into XX-only embryos led to G0 adults that included not only XX females but also 50% of reverted fertile XX males. The G0 XX males expressed male-specific Cctra transcripts, suggesting full masculinization. Interestingly, out of six G0 XX males, four displayed the Cctra wild type sequence. This finding suggests that masculinization by Cas9-sgRNA injections was independent from its mutagenic activity. In line with this observation, embryonic targeting of Cctra in XX embryos by a dead Cas9 (enzymatically inactive, dCas9) also favoured a male-specific splicing of Cctra, in both embryos and adults. Conclusions: Our data suggest that the establishment of Cctra female-specific autoregulation during the early embryogenesis has been repressed in XX embryos by the transient binding of the Cas9-sgRNA on the first exon of the Cctra gene. This hypothesis is supported by the observation that the shift of Cctra splicing from female to male mode is induced also by dCas9. Collectively, the present findings corroborate the idea that a transient embryonic inactivation of Cctra is sufficient for male sex determination
    • …
    corecore